# Considering climate change in controlled waters<sup>1</sup> risk assessment

#### Associate Hydrogeologist, Hydrock SoBRA Sub-group– Climate Change and Controlled Waters

<sup>1</sup> Equivalent term in Scotland is the Water Environment. NIEA use both terms.



## The sub-group

H







**\\S**D























#### Climate change in UK – general overview

#### **Met Office**

#### State of the UK Climate 2021

Air and ground frosts



Climate change is the largescale, long-term shift in average weather patterns and average temperatures and is assessed by averaging data over a 30year period.



#### Future UK climate change projections

Intergovernmental Panel on Climate Change (IPPC) Global greenhouse Emission Standards (SRES > RCP > SSPs)

UK Climate Projections (UKCP18)





### Future UK climate change projections

| Scale                  |                 | Global<br>(60 km)                         | Regional<br>(12 km)                     | Local<br>(2.2 km)         |
|------------------------|-----------------|-------------------------------------------|-----------------------------------------|---------------------------|
| Baseline period        |                 | 1961 – 1990<br>1981 – 2000<br>1981 - 2010 | 1981 – 2000<br>1981 - 2010              | 1981 - 2000               |
| Projection time period |                 | 2010 – 2100<br>(20yr <u>timeslices</u> )  | 2010 –2080<br>(20yr <u>timeslices</u> ) | 2021 – 2040<br>2061- 2080 |
| Projections            |                 | 28                                        | 12                                      | 12 c                      |
| Emissions Scenario     | RCP8.5 (4.3 °C) | $\checkmark$                              | $\checkmark$                            | $\checkmark$              |
|                        | RCP6.0 (2.8 °C) |                                           |                                         |                           |
|                        | RCP4.5 (2.4 °C) |                                           |                                         |                           |
|                        | RCP2.6 (1.6 °C) | $\checkmark$                              |                                         |                           |





#### Climate change in UK – regional variation





#### Source-Pathway-Receptor (SPR) Pollutant Linkages



The Society of Brownfield Risk Assessment

ed Aquifer Aquifer ater (GW) ion water (inland) water (marine) cosystems \*Figure adap Nov. 2020. L contaminatio the water en consultation.

\*Figure adapted from SEPA, Nov. 2020. Land contamination and impacts on the water environment consultation.

#### CSM considerations – extreme rainfall events



- Increase in precipitation (inc. extreme weather events)
- Rise in groundwater levels causing groundwater flooding
- Increase in precipitation causing land based erosion or changes to the geomorphology of surface waters (changes to S-P-R)
- Long term/seasonal changes to groundwater levels

#### CSM considerations – extreme heat events



The Society of Brownfield Risk Assessment

- Fall in groundwater levels
- Desiccation

0

- Abstraction Changes
- Changes to contaminant properties:
  - Solubility
  - DO
  - Volatility
  - NAPL viscosity
  - Microbial activity
  - Reaction kinetics

#### CSM considerations – Sea Level Rise / Coastal Erosion



The Society of Brownfield Risk Assossment

- Tidal limit on estuaries/rivers moves upstream
- Influence on hydraulic gradients in coastal aquifers
- Increased risk of coastal/tidal flooding
- Increased rates of coastal erosion
- o Saline intrusion

## PRA climate change considerations

- Design life of proposed development
- Location and elevation of the site in relation to the sea or tidally influenced rivers
- Projected changes to rainfall, (temperature) and groundwater level for defined time slices (UKCP18, eFLaG)
- The location and elevation of the site in relation to projected increased flooding extents
- Consider "What-if" Scenarios



Appendix 4 of the guidance presents a number of worked PRA case-study examples



#### Does it matter?.....Yes, but not always.





#### **Case Studies**

**Example 1:** Proposed residential development (design life of 60 years) on brownfield site located in Littlehampton, south coast of England.

**Example 2:** Part IIA Assessment of a coastal historical landfill in Eastern England

**Example 3:** Proposed commercial development with basement (design life of 60 years) on former industrial site located in Glasgow, Scotland.



## **GQRA** climate change considerations

- Source delineation (lateral and vertical)
- Preferential flow pathways e.g. subsurface infrastructure
- Understanding of groundwater bodies:
  - unconfined or confined
  - unsaturated zone thickness
  - variation in groundwater level (seasonality)
  - transmissivity
  - hydraulic connection with surface water





#### DQRA climate change considerations



% change in mean recharge 2080s Source: A Hughes et al Journal of Hydrology 598 (2021) Scenario: SRES A1B ≈ between RCP4.5 and RCP6.0



- Long term changes can be modelled but not extremes
- Sensitive parameters:
  - recharge
  - groundwater elevation => unsaturated/ saturated thickness
  - hydraulic gradient
  - Surface water flow
- Nature of hazard / longevity of risk
- ± 5% change within reasonable uncertainty assumptions for input parameters within DQRA

#### **Useful Data Sources**

Section 5.1 of the guidance collates a list of useful data sources - with a selection below:

- UK Climate Projections (UKCP) data - <u>https://www.metoffice.gov.uk/research/appro</u> <u>ach/collaboration/ukcp/data/index</u>
- eFLaG portal -<u>https://eip.ceh.ac.uk/hydrology/eflag/</u>
- Environmental information data centre <u>https://eidc.ac.uk/finddata</u>.
- Coastal risk screening tool coastal.climatecentral.org/map
- National Coastal Erosion Risk Mapping -<u>National Coastal Erosion Risk Mapping</u> <u>(arcgis.com)</u>



Source: eFLAG Portal – showing variation is modelled recharge in the Cam and Ely Ouse Chalk: <u>https://eip.ceh.ac.uk/hydrology/eflag/.</u>



#### Conclusions

- It's complicated!
- Climate change effects may (*or may not*) fundamentally change the S-P-R linkages being considered:
- source/contaminant behaviour
- active pathways
- proximity to / type of receptor
- Regional variability >>> site specific conditions
- Needs to be considered at outset from PRA stage.
- SoBRA guidance provides a framework to help risk assessors incorporate climate change projections and explore consequences within risk assessments





**SoBRA Guidance** <u>https://sobra.org.uk/climate-change/controlled-waters-and-climate-change/</u>

